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Taylor instability of a non-uniform free-surface flow 

By G. DAGAN 
Israel Institute of Technology, Haifa, Israel 

(Received 29 January 1974 and in revised form 18 May 1974) 

The evolution of a small disturbance in a three-dimensional steady free-surface 
flow is investigated. The radius of curvature of the free surface and the length 
scale characterizing the non-uniformity of the velocity are assumed to be of the 
same order of magnitude. It is shown that the local rate of growth of the ampli- 
tude of the disturbance depends on both the normal pressure gradient (as in the 
case of Taylor instability) and the rate of strain on the free surface. Application 
of the theory to rising gaseous bubbles and gravity water waves is discussed. 

1. Introduction 
In a previous study (Dagan 8.z Tulin 1972) we have suggested a mechanism 

of inception of breaking of a two-dimensional free-surface gravity flow in front 
of a blunt body (figure 1) :  as the Froude number grows, the centrifugal accelera- 
tion Vt2/R' is assumed to offset the normal component of the gravitational 
acceleration g' cos I9 at a certain point A of convexity of the free surface ( V' is the 
velocity modulus, R' is the radius of curvature of the free surface and I9 the angle 
between the normal and the vertical). This balance on the local scale was supposed 
to be tantamount to the Taylor criterion for instability of a free surface accelerated 
from below (Taylor 1950) and adopted, thenceforth, as a criterion for stability of 
the flow of figure 1. The Taylor criterion is valid, however, in the case of a plane, 
horizontal unperturbed free surface and a uniform flow parallel to the free sur- 
face. Its direct extension to a steady non-uniform flow, as suggested in our pre- 
vious work, may be valid under a few restrictive conditions, which are now 
examined. For this purpose let us define two characteristic local scales in the 
neighbourhood of a point on the free surface: I' = U'/(aV'/as'), characterizing 
the flow non-uniformity (U' is a characteristic velocity and s' is a co-ordinate 
along the free surface), and R', the radius of curvature. Testing the stability of 
the flow to a small disturbance of wavelength A' may lead to the aforementioned 
simplified criterion if (i) V'2/g'R' = O(i) ,  (ii) A' < R' and (iii) R' < 1'. These 
conditions imply that on the local A' scale the flow is almost uniform and the dis- 
turbance travels many wavelengths in a region subjected to a constant normal 
acceleration. 

The two lengths I' and R' are not independent, however, and condition (iii) 
is generally not satisfied. Let F = F"/(gh')* be the Froude number characterizing 
the flow of figure 1. It can be shown that 1' = O(h')  and R = O(gh'2/V'2), so that, 
at small F, 1' < R' while at  F = 0(1), 1' is probably of the order of R', but not 
much larger as implied by (iii) . 
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FIGURE 1. Steady free-surface gravity flow before a blunt body. 

The aim of the present work is to  generalize the Taylor instability criterion 
for a small disturbance to a steady non-uniform flow in the general case when I’ 
and R‘ are arbitrary. It will turn out that our generalized criterion degenerates 
into the Taylor criterion under the condition 1’ 3 R‘. 

The problem is also related to previous studies of the evolution of short gravity 
waves on steady non-uniform currents (Longuet-Higgins & Stewart 1960, 1961; 
Whitham 1962). In  these studies the non-uniform part of the basic flow is assumed 
from the outset to  be small and of negligible radius of curvature, i.e. R’ 3 1’. 
Here we do not impose any restriction upon the basic flow and we leave the rela- 
tionship between R’ and 1’ unspecified. The stability ofa few free-surface, gravity- 
free, two-dimensional flows is also reviewed by Wu (1968), who neglects the 
effect of gravity and surface tension upon the disturbance. 

The derivation of the generalized stability criterion may be helpful in the 
understanding of the important phenomenon of the breaking of the free surface 
of a gravity flow. 

2. The linearized equations 
We consider a steady inviscid three-dimensional flow with a free surface 

(figure 2). The flow is related to local Cartesian co-ordinates (T’, cr‘, v’), where 
T‘ and d lie in a plane tangential to the free surface and v’ is normal to it and 
directed outwards from the fluid. The variables are first made dimensionless by 
referring them to g‘ (the acceleration due to gravity) and L‘ (a characteristic 
length), i.e. 

1 (1) 
@ = @’/L’(g’L’)p, 7 = T’/L‘, g = d / L ’ ,  U = V ’ / L ’ ,  

v = V’/(g’L’)+, t’ = t’(g’/L’)B, . . . , 
where @’(LT’, 7’, v) is the velocity potential of the basic steady flow and t‘ is the 
time. 

We consider now a perturbation of the basic flow characterized by a small 
parameter E ,  the ratio between the amplitude of the perturbation and L’, and 
expand as follows: 

4(7, c, Y, t )  = @ ( T ,  v, V )  + €41(7, C, V ,  t )  f . .., 
T ( 7 ,  C, t )  = N(T, (+) + “41(7, g, t )  + . . . , 

(2) 

(3) 

x = Z + € Z , +  ..., (4) 
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FIGURE 2. Co-ordinate system relative to the free surface of the basic flow. 

where 4 , ~  and z are the potential, the free-surface equation and the free-surface 
elevation, respectively, while a, N and 2 and q51, rl and z1 are the same quantities 
for the basic steady flow and the first-order perturbation, respectively. 

Substitution of (2)-(4) in Laplace's equation, and the Bernoulli and kinema- 
tical free-surface conditions, and separation of terms O( I )  and O(e) lead to the 
following sets of equations: v211, = ( v  N ) ,  

( 5 )  

(6) z(V@)2+Z 1 = constant ( v  = N ) ,  

( V  = N ) .  

Equations (5)-(7) are the exact nonlinear equations of the basic steady flow 

The term aPlav in (9) is the v component of the pressure gradient of the basic 
with the effect of the surface tension neglected. 

flow at the free surface. It can be shown that at r = 0 

G ) 
aP a 
av a 1l - = -V@.-V@-cosO = - -+cos8 . 

The term on the right-hand side of (9) represents the effect of surface tension, 
T being equal to T'/p'g'Lt2, where T' is the coefficient of surface tension and p' the 
density. 

If the basic flow and the initial value of q51 and ql are given, (8)-( 10) permit US 

in principle to determine q51 and ql at any subsequent t. This is, however, a very 
difficult task because there are very few closed analytical solutions for steady 
free-surface flows and because these equations, although linear, have variable 
coefficients. We consider now a simplified analysis based on a local expansion of 
0 and N 

8-2 
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3. Local analysis 
We assume that the wavenumber k = %/A characterizing the disturbance is 

large (k 9 1). Moreover, we consider the evolution of the disturbance in the 
vicinity of the origin (figure 2 ) ,  i.e. over a distance r = (a2 + 7 9 4  = O(l), and we 
assume that kr = O(1) and consequently, kr2 = o(1). 

Under these conditions it is useful to  expand CD and N in a Taylor series in the 
neighbourhood of 0 for a regular point of the free surface, as follows: 

N = & ( ~ T ~ + % ~ ~ + C C T ~ ) + . . . ,  (12) 

@ = AT+&+ CV + +(D72+Ea2 + GY' + 2 N ~ a  + 2 Q a ~  + 2K7v) + . .., (13) 

wherea,b, ..., A , B ,  ..., are constants. Substitution of (12)and (13) in(5)-(7)yields 

G has the following interpretation, independent of the co-ordinate system: 

where 6s is an element of area in the free surface of the basic flow and DIDt is a 
material derivative. In  the case of a two-dimensional flow (no dependence on a) 
G may also be related to the acceleration or the slope as follows: 

where V = a@/&. The flow will be called a stretching flow at a point where G < 0, 
while the motion will be called a contractive motion for G > 0. Equation (15) 
results from the expression for the material derivative of an element of area 
(Batchelor 1967, p. 132). 

Substitution of N from (12) and Q, from (13) and (14) in (9) and (10) yields, after 
neglecting terms quadratic in 7 and a compared with linear terms, the following 
linear system satisfied by #1 and rl: 

where aP/au is the normal pressure gradient of the basic flow at the origin. 

k travelling at  an angle /3 with respect to the T axis, i.e. 
We solve (S), (17) and (18) for the simple case of a wave of constant wavenumber 

rl(7,g,t) = a(t)exp [ik(~cosp+crsinP)], (19) 

(20)  # 1 ( ~ ,  CT, v, t )  = y(t)  exp [ i k ( ~  cos p + g sin p- iv)], 
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which yields, after substitution and solving the resulting ordinary differential 
equations, 

~ ~ ( 7 ,  u, t )  = ~,(O)exp{ik[~~os/3+uain/3- (a@/a/3)t]]e@, 

p = t { G  + [a2 + 4 k ( a P / a ~  - k2T)]i j .  

(21) 

(22) 

The first exponential function on the right-hand side of (21) represents a wave 
of constant amplitude propagating in the /3 direction with the local velocity 
a@/a/3 ( v  = T = u = 0) .  p is the rate of change of the amplitude and its deriva- 
tion is the main quantitative result of the present analysis. 

4. Local growth or decay of a small disturbance 
First we shall show that p, given by (22), degenerates into simple known expres- 

(i) If G = 0, i.e. the flow is locally uniform, (22) yields 
sions in a few extreme cases. 

p = pT = [k(aP/av - k z ~ ) ] . t ,  (23) 

which is precisely the exponent for Taylor instability with surface tension taken 
into account (Bellman & Pennington 1954). The disturbance amplitude will 
grow or decay with time depending on whether 

a q a v  P T ~  or a q a V  < kZT, (24) 

respectively. Equation (24) is equivalent to the Taylor instability criterion 
adopted in our previous work (Dagan & Tulin 1972) if surface tension is neglected. 

If aP/av = - 1, i.e. the pressure distribution is hydrostatic, p becomes 

p = pw = i [k (  1 + k2T)]*, ( 2 5 )  

which leads via (21) to the well-known dispersion relationship for progressive 
gravity waves in the presence of surface tension (k2T = hr2/hh2, where 

Ah = 2n-(Tr/prg'): = 1.71 cm 
for air and water a t  20 "C). 

flow is free of gravity and surface tension, (22) yields 
(ii) If aPlav- k2T = 0, i.e. the net normal pressure gradient vanishes or the 

p = a. (26) 

D(a,GS)/Dt = 0, (27) 

Equations (21) and (15) lead in this case to 

where a, = q,(0)ertis the disturbance amplitude. Equation (27) is just a wave 
continuity equation which is a direct result of the kinematical equation (18). 
It states that, as the wave is convected with the local velocity a$/ap, its amplitude 
grows or decays depending on whether G > 0 or 0 < 0. 

Now we are in a position to draw a few conclusions on the local growth or decay 
of a disturbance in the general case in which the effect of the flow non-uniformity, 
expressed by (7, and that of the normal acceleration, related t o  aP/av - k2T,  are 
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of the same order of magnitude. Inspection of the real part o f p  in ( 2 2 )  leads to the 
following results. 

(i) aP/av - k2,T > 0 (Taylor instability criterion) is a sufficient condition for 
the local growth of a disturbance. The rate of growth, however, is different from 
pT, given in (23), viz. p < p, for an accelerated flow a n d p  > p, for a contractive 
motion. 

(ii) G > 0 (contractive flow) is a sufficient condition for the local growth of the 
disturbance. However, if aP/av < k2T - G2/4k, the rate of growth is &2 and the 
disturbing wave is dispersive, and if aP/av > k2T - (G2/4k),  the wave is not dis- 
persive and p > 3G. 

(iii) If G < 0 (stretching flow) the amplitude decreases unless aP/av > k2T. 

5. Global stability of the free-surface flow 
We may relate the stability of the flow, in a global sense, to the breaking of the 

disturbing wave when its steepness exceeds a certain limiting value. Our local 
analysis is of limited value in this sense because of two basic limitations: (i) as 
the disturbance travels through regions of varying C and aP/av, the local analysis 
has to be replaced by solving the complete set (8)-( 10) and (ii) if the amplitude 
grows beyond a certain limit the analysis has to be supplemented by taking into 
account nonlinear terms in e (e.g. Rajappa 1970). 

The local analysis reveals, nevertheless, a few distinctive features of non- 
uniform flow as compared with the simple case of a plane free surface: as the dis- 
turbance travels along the free surface its rate of growth varies, as well as its 
relative phase velocity; in particular the disturbance may move from a region 
of growth to one of decay and the flow may be globally stable, a t  least for a certain 
range of initial disturbance amplitudes and wavelengths, although locally there is 
growth. 

Solving the system (8)-(10) for some simple basic flows is probably the next 
step towards a better quantitative description of the global stability. We shall 
consider, nevertheless, a few examples in which the simplified local analysis may 
be still illuminating. 

6. Discussion of a few examples 
We are going to analyse two cases: in the first one the Taylor instability 

mechanism dominates, and in the second one the non-uniformity of the flow has 
the most important effect. 

T h e  rising bubble? 

We consider the flow around a gaseous bubble, of constant gas pressure, which 
rises in a liquid of infinite extent. It is well known (Batchelor 1967, p. 475) 
that such bubbles are almost spherical (figure 3) and move a t  a constant speed 

I am indebted to Prof. Brooke Benjamin for drawing my attention t o  this example ina 
private discussion. 
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FIGURE 3. A rising gaseous bubble. 

U' N $(g'R')k. With R' as reference length we may write (figure 3), by using 
Bernoulli's equation and the sphericity of the shape, 

(28) V = [2( 1 - cos 6714 = 2 sin $8, 

ap/au = case- v 2  = 3cOse-2. 

We are going t o  examine the variation o f p  along the free surface. If we assume 
that the free-surface disturbance is a spherical wave propagating from the stagna- 
tion region towards the outskirts, we have 

(29) 

We have, in this case, an accelerated flow with the gravitational acceleration 
acting outwards from the liquid. At the stagnation point 

appv - PT = 1 - h y q  (e = 0). (30) 

Hence, if the wavelength of the disturbance is smaller than A;, ,u is negative and 
any disturbance will decay. If A' > A; (the Taylor criterion) ,u is positive and the 
amplitude grows. For an observer moving with the disturbance the rate of change 
of the amplitude is - 

1 aa, 1 1 Da, p(8) 
a, 88 V a l  Dt V(8) '  

- 

The ratio p / V  has its maximum a t  the stagnation point (where it tends to 
infinity) and decreases with 8, vanishing a t  an angle 8, given by 

8, = arc cos@ + (AA/A')2]. ( 32) 

a,, which separates the regions of growth and decay, increases rapidly with 
A'/& to its limiting value Bornax 2: 48". This value is suprisingly close to the angle 
of the edge of the spherical caps found in experiments, 8,,, = 46"-64" (Batchelor 
1967, p. 476). 
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FIGURE 4. Variation of ,u/V [from ( 2 2 ) ,  (28) and (29)] and , ~ T / T / T  [from (23), (28) and 
(as)] along the bubble profile. &/R = 0.100. -, p / V ;  ---,-,uT/V. 

In figure 4 we have represented the variation of p/ V [from (22), (28), and (29)] 
with 6, and also of p T / V  [from (23)], for A;/R' = 0.1 and the two values 

A'/& = 1-05 and 2, 

in the range A'l2R' < 8 < 6,. It is seen that application of the Taylor criterion, 
with neglect of the rate of strain G, leads to an overestimate of the rate of growth 
of the amplitude, which is particularly significant for A' close to Ah. 

We may draw the following conclusions on a tentative basis: (i) small bubbles 
(R' N A;) are unconditionally stable because of the damping effect of the surface 
tension; (ii) for large bubbles (R' > A;) small disturbances (A; < A ' < R') propa- 
gate from the tip and reach their maximum amplitude at  8 N 48", which is the 
probable region of collapse; (iii) for very large bubbles the instability at the tip 
is governed by the Taylor criterion and instability may occur near the stagnation 
point. Such a phenomenon has been observed for two-dimensional bubbles by 
Rowe & Partridge (1964) and it leads to the partition of the bubbles into twin 
smaller bubbles. 

Stokes waves 

The second example is that of progressive gravity waves in water. Two such 
waves, of different amplitude, are represented in figure 5. For such waves the 
Taylor instability criterion is never satisfied since, as is well known (Wehausen & 
Laitone 1960), aP/av < - 0.5, the limiting value being attained a t  the crest of a 
wave of maximum limiting height. Hence, in most cases Rep = $G and the ampli- 
tude of a small disturbing wave grows as it travels from the trough towards the 
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FIGURE 5. Variation of ,u [from (22)] and profiles of water waves. ( a )  First-order Stokes 
wave in deep water (2e0 = 0.05). ( b )  Wave of finite amplitude in water of finite depth (Von 
Schwind & Reid 1972, 2e0 = 0.129). 

crest, in the region of contractive motion, and decreases afterwards. The distur- 
bance wave is dispersive, the phase velocity relative to the main wave being 
related to Imp.  

To obtain a picture of the magnitude of &G in the region of growth we have con- 
sidered two examples, which differ in amplitude. 

(a)  A Jirst-order deepwater Stokes wave. With L‘ equal to the wavelength we 
have 

(33) 1 2 = - eo cos 2nx, @ = x - eOeznv sin 2nx, 

R e p  = &G = reo  sin 2 7 4  1 + 27re0 cos 2nx) + O(#, 

where eo is half the amplitude/wavelength ratio. The wave profile and R e p  have 
been represented in figure 5 (a )  for eo = 0-025. A disturbance travelling from the 
trough attains its maximum amplitude a t  the crest. Since G is a slowly varying 
function of x we have approximately 

I aa, G eosin2nx 
+ O ( e 3  - _ _ _ - -  

a, as 2 7  - 2 (34) 

( 3 5 )  and -- alerest - eco/zn + ~ ( e f )  = 1 +“ + ~ ( c ; ) .  
trough 2n 

The ratio ( 3 5 )  is precisely the result obtained by Longuet-Higgins & Stewart 
(1960), as it should be in the case of a basic flow which differs slightly from a uni- 
form flow. 

( b )  A wave of $finite amplitude (figure 5 b ) .  We have adopted in this case the 
solution of Von Schwind & Reid (1972), who have determined the potential and 
the free-surface profile by a ten-term Fourier series? The wave represented 
in figure 5 (b) corresponds to 2e0 g 0.129, h’/L’ = 0*409andC’/(gL’)B = 0.42, where 

t Wo were not aware of the work of  Schwartz (1974) when this calculation was done. 
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h‘ is the water depth and C’ is the Rayleigh wave speed. This is the wave of maxi- 
mum height, for the given h’/L’, which could be determined before the computer 
results began to  diverge. Although the accuracy of the solution is questionable 
a t  such a large amplitude, it still permits us to obtain a qualitative picture of the 
phenomenon. 

First it should be mentioned that the square-root term in ,a in ( 2 2 )  is imaginary, 
since only for k < 0.65 does the expression GLax - 41% become positive. Our local 
analysis does not apply, however, to disturbances with such a low wavenumber. 

The distribution of R e p  = +G as function of x is represented in figure 5 ( b ) ;  
it differs markedly from that obtained by the linear analysis (figure 5a) ,  because 
of the nonlinear effects, which cause an increase of sin 13 and decrease of V at  the 
point of G,,,, for instance. 

To conclude, the growth of the amplitude of a small disturbance is governed in 
the case of gravity waves by the rate of strain on the free surface. The rate of 
growth increases nonlinearly with the amplitude of the gravity wave and prob- 
ably becomes very large when the wave approaches its limiting height. The 
cumulative effect of amplitude growth reaches its maximum a t  the crest and 
breaking will start, therefore, in its neighbourhood. 

7. Conclusions 
The present study has shown that the growth or decay of a small disturbance 

in a free-surface non-uniform flow is governed by two mechanisms: the kinemat- 
ical effect of the rate of strain on the free surface and the dynamical effect of the 
normal pressure gradient, the latter being related to the Taylor instability. A 
local analysis, valid for disturbances of large wavenumbers, has led to a simple 
expression for the rate of growth of the amplitude. 

The problem of the stability of non-uniform free-surface flows is complex. 
If we relate instability to  the breaking of the disturbing wave, a complete ana- 
lysis has to  take into account nonlinear effects related to  the amplitude and to  
the interaction with the basic flow, as the disturbance travels through regions 
of growth or decay. Moreover, viscosity will probably play a role in the develop- 
ment of small disturbances. The simplified analysis presented here still reveals 
some qualitative features of the mechanism of stability of free-surface flows. 
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